14.4

Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per
unit solid angle in nonrelativistic motion of a particle with charge e, moving

(a) along the z axis with instantaneous position z(f) = a cos wt,

(b) in a circle of radius R in the x-y plane with constant angular frequency w,.
Sketch the angular distribution of the radiation and determine the total power

radiated in each case.

14.7

A nonrelativistic particle of charge ze, mass m, and initial speed v, is incident on
a fixed charge Ze at an impact parameter b that is large enough to ensure that the
particle’s deflection in the course of the collision is very small.

(a) Using the Larmor power formula and Newton’s second law, calculate the
total energy radiated, assuming (after you have computed the acceleration)
that the particle’s trajectory is a straight line at constant speed:
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(b) The expression found in part a is an approximation that fails at small enough
impact parameter. For a repulsive potential the closest distance of approach
at zero impact parameter, r, = 2zZe*/muv}, serves as a length against which
to measure b. The approximation will be valid for 5 >> r.. Compare the
result of replacing b by r, in part a with the answer of Problem 14.5 for a
head-on collision.

(c¢) A radiation cross section y (with dimensions of energy times area) can be
defined classically by multiplying AW(b) by 27b db and integrating over all
impact parameters. Because of the divergence of the expression at small b,
one must cut off the integration at some b = b, If, as in Chapter 13, the
uncertainty principle is used to specify the minimum impact parameter, one
may expect to obtain an approximation to the quantum-mechanical result.
Compute such a cross section with the expression from part a. Compare your
result with the Bethe—Heitler formula [N~! times (15.30)].

14.8 ) ;

A swiftly moving particle of charge ze and mass m passes a fixed point charge Ze
in an approximately straight-line path at impact parameter b and nearly constant
speed v. Show that the total energy radiated in the encounter is
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This is the relativistic generalization of the result of Problem 14.7.

14.9

A particle of mass m, charge ¢, moves in a plane perpendicular to a uniform, static,
magnetic induction B.

(a) Calculate the total energy radiated per unit time, expressing it in terms of
the constants already defined and the ratio vy of the particles’s total energy
to its rest energy.

(b) If at time ¢ = 0 the particle has a total energy E, = yomc?, show that it will
have energy E = ymc® < E, at a time ¢, where

provided y >> 1.



(¢) If the particle is initially nonrelativistic and has a kinetic energy T, at ¢t = 0,
what is its kinetic energy at time ?

(d) If the particle is actually trapped in the magnetic dipole field of the earth
and is spiraling back and forth along a line of force, does it radiate more
energy while near the equator, or while near its turning points? Why? Make
quantitative statements if you can.

15.2

A nonrelativistic particle of charge e and mass m collides with a fixed, smooth,
hard sphere of radius R. Assuming that the collision is elastic, show that in the
dipole approximation (neglecting retardation effects) the classical differential
cross section for the emission of photons per unit solid angle per unit energy
interval is
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where 6 is measured relative to the incident direction. Sketch the angular distri-
bution. Integrate over angles to get the total bremsstrahlung cross section. Qual-
itatively, what factor (or factors) govern the upper limit to the frequency
spectrum?

15.4
A group of charged particles with charges e; and coordinates r;(f) undergo inter-
actions and are accelerated only during a time —7/2 < t < 7/2, during which their
velocities change from cB; to cf,.
(a) Show that for w7 << 1 the intensity of radiation emitted with polarization e
per unit solid angle and unit frequency interval is
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(b) An «° meson of mass 784 MeV decays into "7~ and e*e~ with branchin
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ratios of 1.3 X 1072 and 8 X 107°, respectively. Show that for both decay
modes the frequency spectrum of radiated energy at low frequencies is
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where M,, is the mass of the »° meson and m is the mass of one of the decay
products. Evaluate approximately the fotal energy radiated in each decay by
integrating the spectrum up to the maximum frequency allowed kinemati-
cally. What fraction of the rest energy of the «° is it in each decay?



