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The angular momentum L of the electromagnetic field due to an electric point charge e, and
a magnetic point charge (pole) g, is calculated by several methods to obtain J. J. Thomson’s
result that L = eg/c, and L is directed along the line joining the electric monopole to the
magnetic monopole. The relation to Dirac’s monopoles is discussed, and particle size is

considered.

I. INTRODUCTION

In 1931 Dirac! considered the phase of the wave func-
tion describing the motion of an electron of charge —e in
the field of an isolated magnetic pole of strength g, and
concluded that if free magnetic poles occur in nature, the

electric and magnetic charges must be quantized accord-

ing to the product relation

eg =3, (1.1)
where n is an interger, # is Planck’s constant divided by
27, and ¢ is the speed of light.?2 This means that if the
electron charge is the smallest electric charge, the small-
est magnetic charge (pole strength) is (137/2) e.

A system consisting of an electric charge and a magne-
tic pole was considered by Thomson.?* Figure 1 shows
an electric point charge e at 4 and a magnetic pole g at
B. Thomson obtained, without showing details, that the
angular momentum of the electromagnetic field of the
system is in the direction AB and equals eg/c. By invok-
ing the quantization rule for angular momentum, Saha®
and Wilson® set eg/c =n#i/2, and obtained very simply
Dirac’s result. A good discussion on magnetic poles is
now available in a text by Jackson.”

In this paper several derivations of Thomson’s result
are presented with the hope that the methods discussed
would be of interest to students and teachers of electricity
and magnetism and would find applications in other prob-
lems. The system considered, Thomson’s monopoles, is
of interest since it is relevant to the intensive research ef-
forts on magnetic poles,®!° and since it offers, as Thom-
son* showed, a simple example illustrating the conserva-
tion of the total angular momentum of the system which
consists of the angular momentum of the field set up by
the charges and the orbital angular momentum of the
charges themselves.

Three different derivations are given: Sec. II deals with
a conventional derivation using polar coordinates. This
method, which is very likely Thomson’s unpublished
method, must be known, in one form or another, to many
readers. It is included for completeness and to introduce
the other two methods. Section III uses the results of po-
tential theory and the integrations are carried out by in-
spection. Section IV discusses the problem in its natural
coordinate system, the prolate spheroidal system, which
exhibits the symmetry of the problem. Finally, a simple
derivation is given in the Appendix by a slight modifica-
tion of Thomson’s torque argument.? Gaussian units are
used and the result in mks units is given in the Appendix.
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II. POLAR COORDINATES

Figure 1 shows the geometry of the model. The 7 axis
is in the direction AB and the spacing of the charges is a.
The electric and magnetic fields at P are E = ery,73, and
B = gry, 3. The linear momentum density of the field is
defined by E X B/(4mc), and hence the momentum ele-
ment at P is

dP = eglanc)y ! (ryr,) 2 sinby, dré,, 2.1)
where dr is a volume element, and &, is a unit vector in
the ¢ direction (out of the plane of the paper). We ob-
serve that the momenta elements at P and P’ (the image
of P in the z axis) form a couple whose axis is the 7 axis,
and the system is analogous to a spinning top.® Thus, the
total electromagnetic momentum of the system is zero,
and the total angular momentum (moment of momentum)
is directed along the 7 axis, and can be obtained by tak-
ing the moment of the momentum elements about any
point in space. By taking the z component of the moment
of dP about any point on the z axis we obtain the element
of angular momentum

dL,=eg(dnc) (r7,) %0 sindy, dr. (2. 2)

Take the origin at A and substitute

dar = 271'7’12 Sin91 d91 d1’1 N

p=7;8inf,, sind,,/a=sind,/r,

©

Fig. 1. Geometry of the model.
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to obtain

-ega [ ﬁﬂ?ﬂ 40, dr,. 2. 3)

With the substitutions r; =as, 6, = 8 (dummy variable),
and r,2 = a?(1 +s* — 25 cosf) we obtain

L & s sin®0 d0ds
‘_20_/(1+sz—23 cosf)’?’

which shows that L, is independent of the distance a be-
tween the charges.!! Integrate by parts over 6 to obtain

_eg [~ ' cosfsind df
L‘—c,[ ds[ (1+s*=2scos)/?"

Expand (1 + s — 2s cos#)™' in spherical harmonics and
integrate the only surviving term cos26 to obtain'?

(2. 4)

(2. 5)

2
35S, s<l1,

sinf cosfdbf

1+si—2scosd)72 |, .
( ) 257 s>1,

(2.6)

which together with (2.5) gives Thomson’s result

L,=eg/c. 2.7

Alternatively, the integral in (2.5) can be written.

© v cosf sinf dé
/ ds (1+s - 2scosf)t/?

f cosf
(1+s*=2s cosé')”2 2ns?

d3s,

which by comparison with the formula giving the poten-
tial (r) for a given charge distribution p(r), namely

H(r) =_/Ir+r'f pdr,

shows that J is the potential at the point z = 1 on the
polar axis (location of the magnetic pole) for the charge
distribution cos6/(2ms?) surrounding the origin (location

of the electric charge). But the solution of Poisson’s equa-
tion

2.9)

Ayp=~2cosf/r? (2. 10)
is simply!3
P(r) = cosé. (2.11)
Hence, J = (0 =0) = 1.
We shall now exploit this result of potential theory and
Gauss’s theorem to construct a simple derivation.

III. POTENTIAL THEORY SOLUTION

Take the angular momentum about the point C the
center of AB. Since

rX(EXB)=r.BE -r+EB,

and 2r =r, + r,and a=r; — r,, we have
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(2.8)

dL=§i<r1 _r

Ii'T2a)ar, (3
Yo7y Y7y +_3_-3. > ’ (.1)

Y17y

_eg [cos@
o e

_205% Lo BTy 'é)dr. (3.2)

1%y 7y

By (2.8), (2.10), and (2.11) the integrals of the first
terms in (3.2) are

/ 00891 f —-COSBZ d3 1;
21T7'27'1 777'11’2
the first integral is the potential at B due to the charge
distribution cos@,/(27r,2) centered at A, and the second
integral is minus the potential at A due to a similar charge
distribution at B; in (2.11), # = O for the first integral and
0 = 7 for the second integral.

In the last term in (3.2) write d7 =d3%, = dS dr,,

where § is the surface of a sphere of center B and radius
r, to obtain

(3.3)

1‘ 1‘

_a [dn
47r f /E - ds
=eaf ar, Ulry-a)=e,
0 72

where the surface integral is evaluated by Gauss’s
theorem, namely, the electric flux across the sphere of
radius r, is 4me if ro>a, and zero otherwise, or
flux = 4mel(r, —a), where U is the step function. The
result L, = eg/c follows from Eqs. (3.2)-(3.4).

(3.4)

IV. PROLATE SPHEROIDAL COORDINATES

The coordinates of P are (u,v,¢), where ¢ is the
azimuthal angle, and the constant ¥ and v surfaces are
confocal prolate ellipsoids and hyperboloids respectively,
with A and B as foci. With C as or1gm and p? = x2 4 y2?,
the surfaces are defined by!?

uU=ri+v, a<u<ew, 4.1)
V=ry=7, —a<v<a, 4.2)
or, equivalently by geometry,
2 2
z p 1
=+ == 4,3
u e 4’ (4.3)
2 2
2 pt 1
P e @.4)

To obtain L, in this coordinate system we need to ex-

press dL. of (2.2) in terms of # and v. Evidently,
= (u —v)/2 re =W +v)2, Vu -rl + ry, where the
carat denotes a unit vector, Vv =7, —Fy, Vu - Vv =

(verifying the orthogonality of the ellipsoids and hyper-
boloids), |Vu|? =2(1 + cosfs,), and |Vv|2 =2(1

— cos#,,). Hence, the volume element which is 2mp du dy/
(| Vu| er |) = (wp/sinby,) du dv. By eliminating
z% from (4.3) and (4.4) we obtain

p?=(a? - v*)(? - a®)/(4a?). (4. 5)
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By performing the proper substitutions in (2.2) we obtain

e © (2 2Y(,% _ 2
=gcg-L d’l)[ (d aZ(ZZ)EuvZ)Za ) du. (4. 6)

Now, let 1 = a/x, and v = ay to obtain the symmetric in-
tegral

2eg 1 —x) 2
L= f f ORI
where the factor 2 accounts for limiting the y integration
to positive values. It remains to show that the integral is
1/2. Expand (1 —x%?)~? in power series and integrate
term by term. Thus,

(4.7)

(2n+1)2n+3)" (2n+3)

1 .
//[1—(x+y)+xy] (n+ 1w dx dy = Z)(n+1)<( 11?_ 2 R )
0 7o

4 1 <
=? (n+1)(2n+ 1)2(2n+3)2 =§Zg Zn+1)'Z

which is the desired result.!®

V. PARTICLE SIZE'¢

Since a finite electrostatic (magnetostatic) energy re-
quires a charge of finite size, let us calculate L for
charges of finite size. First, assume in Fig. 1 the electric
charge to be a sphere of radius R, and the magnetic
charge to be a point charge. For spherical charge distribu-
tion, the electric field is radial and is of magnitude E(r).
By the methods leading to Eq. (2.6),

L,=(2g/3¢c) [ vE()f(¥)ar, (5.1)
fr)=r/a®, r<a,
=a/r’, r>a. (5. 2)

If the electric charge is distributed uniformly over the
volume of the sphere R, the above integration gives

L,=(eg/c1 - R*/5a%),
= (ega/5cR®)(5R? - a?),

a>R,

a<R, (5.3)

If, on the other hand, the electric charge is distributed
uniformly over the surface of the sphere R, we have

= (eg/c)(1 - R?/3a%),
=2ega/3cR,

a>R,

a<R. (5. 4)

If both charges are now rigid (impenetrable) spheres of
radii R, and R,, Eqgs. (5.3) and (5.4) give

L,=(eg/c)[1 - (R,2+R,%)/ra?], (5. 5)
where A = 5 for uniform volume charge distributions, and
A =3 for uniform surface charge distributions. Thus, if
the charges remain a few diameters away from each
other, their field angular momentum is practically that of
point charges. By considering charge distributions concen-
trated near the center of the sphere, the size effect can be
made negligible.

There is a well-known difficulty with the conservation
of the angular momentum of point charges: In a head-on
collision, the field angular momentum L is reversed if
one charge goes through the other, and since the orbital
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1 1 s 1 1
(2n+3) =§<1+7§ @n+17 ~ ,,g (2n+ﬂ2>=§’ (4.8)

angular momentum 1 remains zero, the total angular
momentum is not conserved.!” By considering classically
the monopoles as rigid smooth spheres with charge dis-
tributions concentrated near the centers, this difficulty is
avoided.
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APPENDIX

In Fig. 1 let the x axis be in the direction DP. Allow
the magnetic pole B to move relative to A with a non-
relativistic velocity v in the x direction for an infinitesi-
mal time &:. The magnetic pole experiences a Lorentz
force of magnitude egv/(a®c) in the positive y direction
which is equal and opposite to the Lorentz force exerted
by the pole on the electric charge. The torque produces a
change in the orbital angular momentum of the charges 8l
which points in the negative x direction and is given by
81, = egvdt/(ac). The electromagnetic field angular
momentum L is along AB, and since AB rotates by the
angle vot/a, the change in the field angular momentum
8L is in the x direction and 8L, = Lv8t/a. Thomson* in-
serts L = eg/c to prove 8(1 + L) = 0. Conversely, if we
assume the conservation of angular momentum we obtain
L =eglc. Alternatively, if we apply an external torque to
the charges to balance the Lorentz torque, we have 8/, =0
and 8L, = egvdt/(ac) or L = eglc.

In mks units the momentum density is defined by
E x H/c? or D X B since €guo = ¢~ 2. This multiplies the
cgs result for L, by the factor ue/(4m) and Dirac’s result
assumes the form L, = eguq/(4w) = nfi/2 which gives
3.3 X 107® A m for the smallest g.

1p. A. M. Dirac, Proc. R. Soc. A 133, 60 (1931). Dirac presented a
more complete theory of magnetic poles in Phys. Rev. 74, 817
(1948).

2], Schwinger, Phys. Rev. 144, 1087 (1966), obtains (1.1) with n only
an even integer.

3). J. Thomson, Elements of the Mathematical Theory of Electricity and
Magnetism, 4th ed. (Cambridge University, Cambridge, 1909), p.
532.

1. Adawi 764



4J. J. Thomson, Recollections and Reflections (Macmillan, New York,
1937), p. 370.

M. N. Saha, Phys. Rev. 75, 1968 (1949); Ind. J. Phys. 10, 145
(1936). '

SH. A. Wilson, Phys. Rev. 75, 309 (1949). Wilson was a student of
Thomson and knew first hand of Thomson’s monopoles.

"D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York,
1975), Secs. 6-12 and 6-13.

®D. M. Stevens, Virginia Polytechnic Institute and State University, Oc-
tober 1973, VIP-EPP-73-5 (unpublished) contains a good survey of
the literature.

P, B. Price, E. K. Shirk, W. Z. Osborne, and L. S. Pinsky, Phys.
Rev. Lett. 35, 487 (1975), report observation of a magnetic pole.
For reaction to this report see: Phys. Today 28 (10), 17 (1975); M. W.
Friedlander, Phys. Rev. Lett. 35, 1167 (1975); E. V. Hungerford, ibid.
35, 1303 (1975).

10For recent theoretical models of monopolés see G. 't Hooft, Nucl.
Phys. B 79, 276 (1974); M. K. Prasad and C. M. Sommerfield,
Phys. Rev. Lett. 35, 760 (1975).

"!'The integral in (2.4) can be performed over s first by the substitution
s = cos@ + sinf tan¢ followed by an elementary integration over 6
to give (2.7).

765 Am. J. Phys. Vol. 4, No. 8, August 1976

12The result (2.6) can be obtained by the substitution u? =1 + s?
— 25 cosé.

13Note A cosf = — (L%/r?) cos@ = — (2/r?) cosf, where L? is the square
of the angular momentum operator.

'4For a general discussion on ellipsoidal coordinates see, e.g., H. Bate-
man, Partial Differential Equations (Dover, New York, 1944),
Chap. 8.

'5The integral can also be performed routinely over x by the substitution
x = sinffy. The resulting y integration

1
1 1-¥4 1+y 1-9°
2f0<2y " Ty >dy’

can be performed either by successive partial integrations with pro-
per care when taking limits, or by expanding the integrand in a
power series and arriving at the last line of (4.8).

16This section was added in proof.

17T am indebted to Professor Kittel for bringing this to my attention.
This problem is avoided in quantum mechanics since the wave func-
tion for the relative motion of the monopoles vanishes at the origin.
See, e.g., H. J. Lipkin, W. I. Weisberger, and M. Peshkin, Ann.
Phys. 53, 203 (1969). :

I. Adawi 765



